Gorenstein syzygy modules
نویسندگان
چکیده
منابع مشابه
Gorenstein syzygy modules
Article history: Received 26 March 2009 Available online 23 October 2010 Communicated by Efim Zelmanov MSC: 16E05 16E10
متن کاملStrongly ω-Gorenstein Modules
We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...
متن کاملGorenstein Dimension of Modules
R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...
متن کاملOn syzygy modules for polynomial matrices
In this paper, we apply the theory of multivariate polynomial matrices to the study of syzygy modules for a system of homogeneous linear equations with multivariate polynomial coefficients. Several interesting structural properties of syzygy modules are presented and illustrated with examples. © 1999 Elsevier Science Inc. All rights reserved. AMS classification: 15A23; 13P05; 15A24; 15A06; 13C9...
متن کاملk-Gorenstein Modules
Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then characterize it in terms of the U -resolution dimension of some special injective modules and the property of the functors Exti(Exti(−, U), U) preserving monomorphisms, which develops a classical result of Auslande...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2010
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2010.10.010